Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Bis(isothiocyanato-kN)-bis(methanol- κ O)bis[2,4,6-tri(4-pyri-dyl)-1,3,5-triazine- κN^{2}]manganese(II)

Jinkwon Kim* and Sujin Han

Department of Chemistry, Kongju National University, 182 Shinkwan, Kongju, Chungnam 314-701, South Korea
Correspondence e-mail: jkim@kongju.ac.kr

Received 28 August 2002
Accepted 11 September 2002
Online 30 September 2002
The title compound, $\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$, contains a centrosymmetric octahedral $\mathrm{Mn}^{\mathrm{II}}$ centre and three pairs of trans-coordinating ligands. It is the first example of a mononuclear metal complex with the 2,4,6-tri(4 -pyridyl)-1,3,5triazine (tpt) ligand. Intermolecular $\pi-\pi$ stacking of the planar tpt ligands, as well as hydrogen bonds between pyridyl N and methanol H atoms, results in the formation of a threedimensional network.

Comment

The simple trigonal building block 2,4,6-tri(4-pyridyl)-1,3,5triazine (tpt) has been utilized as a bridging unit for coordination polymers with diverse structures (Batten et al., 1995a,b; Abrahams, Batten, Hamit et al., 1996; Abrahams, Batten,

(I)

Grannas et al., 1996; Abrahams et al., 1999), and as a template in the synthesis of porphyrin (Anderson et al., 1995) or phthalocyanine (Hanak et al., 1999) oligomers. In the course of our efforts to explore new supramolecular architectures using tpt and NCS^{-}ligands, the title compound, (I), was unexpectedly isolated, and it has been characterized by singlecrystal X-ray analysis. To our knowledge, this is the first example of a mononuclear tpt metal complex.

The molecular unit of (I) comprises two tpt ligands, two NCS^{-}anions and two methanol ligands. As shown in Fig. 1, the molecule possesses crystallographic inversion symmetry on the metal ion, and thus each ligand pair is coordinated with a trans geometry, resulting in a distorted octahedral environment around $\mathrm{Mn}^{\mathrm{II}}$.

It should be noted that tpt uses only one of three possible N atoms in coordinating to the metal ion. The $\mathrm{Mn}-\mathrm{N}_{\text {tpt }}$ bond distances are longer than the $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{N}_{\mathrm{NCS}}$ distances. The $\mathrm{Mn}-\mathrm{N}_{\text {tpt }}$ bond distance is 2.355 (3) \AA, which is consistent with the value of 2.360 (4) \AA found in $\left[\mathrm{Mn} L_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{SCN})_{2}\right][L$ is 2,5-bis(4-pyridyl)-1,3,4-oxadiazole; Fang et al., 2002], but somewhat longer than the value of 2.31 (1) A found in the linear polymeric complex $\left[\mathrm{Mn}(\mathrm{bpe})(\mathrm{NCS})_{2^{-}}\right.$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}$] [bpe is trans-1,2-bis(4-pyridyl)ethene; De Munno et al., 1999].

The $\mathrm{Mn}-\mathrm{N}_{\mathrm{NCS}}$ bond distance is $2.139(3) \AA$, in good agreement with the sum of the Shannon (1976) ionic radii ($2.13 \AA$) and the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}_{\mathrm{NCS}}$ distance of 2.141 (7) \AA observed in $\left[\mathrm{Mn}(\mathrm{tbr})_{3}(\mathrm{NCS})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n} \quad$ (tbr is $4,4^{\prime}$-bis-1,2,4-triazole; Zilverentant et al., 1998). However, this $\mathrm{Mn}-\mathrm{N}_{\mathrm{NCS}}$ distance is slightly shorter than that found in $\left[\mathrm{Mn}\left(\mu-4,4^{\prime}\right.\right.$-bipyridine $)\left(4,4^{\prime}-\right.$ bipyridine) $\left.(\mathrm{NCS})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}[2.188$ (8) \AA; Li et al., 1995] and considerably shorter than that found in $\left[\mathrm{Mn}(\mathrm{bpe})(\mathrm{NCS})_{2^{-}}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]_{n} \quad[2.24$ (2) \AA; De Munno et al., 1999]. As an explanation of such bond lengthening in this last complex, it was suggested that the thiocyanate groups are involved in hydrogen-bond formation. The $\mathrm{Mn}-\mathrm{O} 1$ distance in (I) [2.213 (3) \AA] is in the usual range. The thiocyanate ligand has the expected linear geometry, with an $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angle of 178.5 (3).

The mean atomic displacement from the least-squares plane of the tpt ligand is $0.079 \AA$. However, the value for the plane excluding the N2-pyridyl ring is only $0.018 \AA$. The N2-pyridyl ring forms a dihedral angle of 7.8 (2) ${ }^{\circ}$ with the central $\mathrm{C}_{3} \mathrm{~N}_{3}$ ring, while the corresponding values for the N1- and N3pyridyl rings are 1.9 (2) and $0.9(2)^{\circ}$, respectively. The distortion of the N2-pyridyl ring is caused by the hydrogen bond between N2 and the methanol H atom (Table 2), and this hydrogen bond forms a one-dimensional linear chain structure along the [011] direction, as shown in Fig. 2.

The shortest intrachain separation of Mn atoms is 14.413 (4) \AA. In addition, the molecules are stacked with the

Figure 1
A view of the molecule of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The one-dimensional linear chain structure of (I), formed by hydrogen bonding.

Figure 3
A two-dimensional molecular packing diagram for (I).
closest approach between the aromatic rings being ca $3.29 \AA$, leading to the formation of a two-dimensional structure, as depicted in Fig. 3. These two-dimensional layers are stacked further by $\pi-\pi$ interactions to form a three-dimensional network.

Experimental

A solution of tpt $(0.2 \mathrm{~mol})$ in dichloromethane $(20 \mathrm{ml})$ was added to a solution of an excess of potassium thiocyanate in methanol $(10 \mathrm{ml})$. The mixture was stirred for 10 min and treated with a solution of $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$. After stirring for 2 h at ambient temperature, the resulting solution was set aside to crystallize, producing analytically pure (I). A crystal of (I) suitable for X-ray diffraction analysis was selected directly from the analytical sample.

Crystal data

$\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$	$Z=1$
$M_{r}=859.86$	
Triclinic, $P \overline{1}$	$D_{x}=1.406 \mathrm{Mg} \mathrm{m}^{-3}$
$a=8.871(2) \AA$	Mo $\AA \alpha$ radiation
$b=8.875(2) \AA$	Cell parameters from 25
$c=14.161(4) \AA$	reflections
$\alpha=106.54(2)$	$\theta=23-29^{\circ}$
$\beta=100.60(2)^{\circ}$	$\mu=0.48 \mathrm{~mm}^{-1}$
$\gamma=100.93(3)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1015.3(4) \AA^{\circ}$	Needle, yellow
	$0.32 \times 0.17 \times 0.15 \mathrm{~mm}$

Table 1
Selected geometric parameters ($\AA,{ }^{\circ}$).

$\mathrm{Mn}-\mathrm{N} 7$	$2.139(3)$	$\mathrm{S} 1-\mathrm{C} 19$	$1.609(4)$
$\mathrm{Mn}-\mathrm{O} 1$	$2.213(3)$	$\mathrm{O} 1-\mathrm{C} 20$	$1.425(5)$
$\mathrm{Mn}-\mathrm{N} 1$	$2.355(3)$	$\mathrm{N} 7-\mathrm{C} 19$	$1.155(4)$
N7-Mn-O1	$91.03(12)$	$\mathrm{C} 20-\mathrm{O} 1-\mathrm{Mn}$	$128.8(3)$
N7-Mn-N1	$89.57(11)$	$\mathrm{C} 19-\mathrm{N} 7-\mathrm{Mn}$	$164.5(3)$
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 1$	$86.55(10)$	$\mathrm{N} 7-\mathrm{C} 19-\mathrm{S} 1$	$178.5(3)$

Data collection

Enraf-Nonius CAD-4
diffractometer

$$
\theta_{\text {max }}=25^{\circ}
$$

$\theta / 2 \theta$ scans
$h=-10 \rightarrow 10$
3732 measured reflections
3571 independent reflections
2796 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$l=0 \rightarrow 10$
$\rightarrow 16$
3 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.132$
$S=1.01$
3571 reflections
268 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0374 P)^{2}\right. \\
+1.8244 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.028 \\
\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{gathered}
$$

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{HO} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.96	1.77	$2.721(4)$	173
Symmetry code: $(\mathrm{i})-x,-y, z$				

Symmetry code: (i) $-x,-y,-z$.

Data collection: MACH3 (Enraf-Nonius, 1996); cell refinement: CELDIM (Enraf-Nonius, 1996); data reduction: XCAD4 (Harms \& Wocadlo, 1995); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the NRL programme of the Ministry of Science and Technology, South Korea.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1080). Services for accessing these data are described at the back of the journal.

References

Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. \& Robson, R. (1996). J. Chem. Soc. Chem. Commun. pp. 1313-1314.
Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F. \& Robson, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 1690-1692.
Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F. \& Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475-1477.
Anderson, H. L., Anderson, S. \& Sanders, K. M. (1995). J. Chem. Soc. Perkin Trans. pp. 2231-2245.
Batten, S. R., Hoskins, B. F. \& Robson, R. (1995a). Angew. Chem. Int. Ed. Engl. 34, 820-822.
Batten, S. R., Hoskins, B. F. \& Robson, R. (1995b). J. Am. Chem. Soc. 117, 5385-5386.
De Munno, G., Armentano, D., Poerio, T., Julve, M. \& Real, J. A. (1999). J. Chem. Soc. Dalton Trans. pp. 1813-1817.
Enraf-Nonius (1996). CELDIM and MACH3 (Version 2.0). Enraf-Nonius, Delft, The Netherlands.
Fang, Y.-Y., Liu, H., Du, M., Guo, Y.-M. \& Bu, X.-H. (2002). J. Mol. Struct. 608, 229-233.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hanak, M., Fielder, M. \& Subramanian, L. R. (1999). Synth. Met. 100, 123-130. Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Li, M.-X., Xie, G.-Y., Gu, X.-D., Chen, J. \& Zheng, P.-J. (1995). Polyhedron, 14, 1235-1239.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zilverentant, C. L., Driessen, W. L., Haasnoot, J. G., Kolnaar, J. J. A. \& Reedijk, J. (1998). Inorg. Chim. Acta, 282, 257-260.

